Cooperative planning is key to protecting our community and minimizing research disruptions due to COVID-19. We ask that all Principal Investigators and directors of laboratory facilities develop contingency plans for their own labs. We are offering the below guidance to assist you with these efforts. In addition, all members of the research community are invited to participate in upcoming WashU Continuity Workshops to learn more about continuity planning and to ask questions.

Faculty who lead research groups and facilities are responsible, and best-positioned, for planning how to operate smoothly or safely curtailing research in a disrupted environment. In particular, we urge you to think through how you would cope with a lack of people who can physically be in your lab and disruptions in supplies of materials you need to run your labs. Part of good planning will be to establish clear communications and roles within your group for addressing these questions.

While it’s impossible to predict exactly what to plan for, it could be useful to consider disruptions that last two weeks or more, across a few general scenarios:

- What can you do to implement social distancing in your research? What would it take to stagger work times in the lab, increase distances between people to six feet or more for extended work times, or find alternatives to write-up spaces in close quarters?
- What would you do if just your group or building were quarantined or unable to come to work?
- What would you do if the entire campus were closed (except for maintenance of essential services as listed above)?
- What supplies are critical to your operations and how can you best protect against disruptions in the availability of those materials?
- What changes would be required in your operations if core facilities and other fee-for-service resources, such as clean rooms or machine shops, were not available?

In thinking through these questions, please consider the below guidance in developing your plans:

1. Lab Equipment and Research Materials
 a. Identify critical lab equipment and research materials.
 b. Determine if there is any equipment that cannot be shut down and equipment that requires routine monitoring.
 c. Determine how long it will take to shutdown equipment and experiments. Document the safest and most expeditious procedures.
 d. Determine availability of remote monitoring and back-up power supplies to maintain critical equipment.
 e. If required monitoring cannot be performed, notify Emergency Management.
 f. Determine if any special contingencies arise due to brief utility outages. For example, temperature sensitive materials.
g. Secure hazardous materials (e.g., radioactive materials) and store hazardous materials and waste in the appropriate environment (e.g., containment, shielding, etc) in case access is not available for an extended period.

2. Lab Personnel
 a. Assign roles and responsibilities during non-standard operations.
 b. Determine delegation of authority in case the responsible individual is unable to make decisions.
 c. Consider organizing your system to send in one individual at a time into the lab to perform essential functions. Maintain a communication plan and system in place to verify the individual is safe during this time in the lab. Typical research activities might include animal monitoring and care, cell culture maintenance and equipment checks. Sharepoint and other electronic tools may be useful to organize and communicate visits.
 d. Ensure staff have appropriate training and identify areas of cross-training to make your operations more robust.
 e. Coordinate with colleagues who have similar research activities to identify ways to ensure coverage of critical activities.

3. Communication Plan
 a. Ensure your emergency contact information is current in HRMS.
 b. If not created already, please develop a communication plan for your lab.
 c. Verify lab entry signage and emergency contact information is correct.
 d. Determine how you will communicate needs during non-standard operations. Example communication methods include: Email, Zoom, Skype, Microsoft Teams, WhatsApp, Slack).
 e. Remember to review your plans with all researchers and staff in your group.

4. Work Flow
 a. Identify any experiments that can be ramped down, curtailed or delayed.
 b. Consider performing work amenable to remote support, such as data analysis, off campus.
 c. Generating data now that can be analyzed remotely in the future is a potential option that might create future flexibility.

5. Information Technology
 a. Confirm remote access (VPN)
 b. Verify access to necessary files, data, software applications, etc.

6. Final Reminder: Under NO circumstances are researchers to take materials other than their laptops, data storage devices, etc off campus. All EH&S Policies and Procedures remain in effect.

EH&S Training

- All in-person training provided by EH&S including Laboratory Safety, Clinic Safety, Radiation Safety and Shipping Training has been suspended until further notice. Please note training is available online via Learn@Work. Contact EH&S with questions or concerns.
EH&S Services

- At this time, we do not anticipate changes to the services we provide. We will continue to monitor the situation and provide updates as needed. Contact EH&S with questions or concerns.